
1

Human Capital Analytics Reporting
(HCA Reporting 12.0.2)

User Guide

Last Updated: 4/11/2024

Revision 1.2

2

Contents
HCA Reporting ... 5

Accessing HCA Reporting .. 5

Layout ... 5

Help ... 7

Finding reports ... 8

Viewing and interacting with reports ... 9

Copying or moving reports ... 9

Setting the package for a report .. 9

Renaming a report ... 9

Share your content by email .. 10

Scheduling a report ... 10

My schedules and subscriptions.. 11

Renewing credentials used for scheduled reports .. 12

HCA Author ... 13

Creating a report .. 13

Templates and themes ... 13

Selecting a package .. 14

Insertable objects .. 15

Sources tab .. 15

Data Items tab .. 15

Toolbox tab ... 15

Add relational data to a report ... 17

Data organization .. 17

Searching for fields .. 18

Data Security .. 20

Viewing results ... 20

Report authoring layout .. 21

Saving a report ... 21

Editing an existing report .. 22

Creating a filter ... 22

Edit or remove a filter .. 24

Sorting relational data ... 24

3

Group relational data... 25

Add a simple summary ... 25

Format data .. 26

Edit column header ... 26

Calculations .. 27

Advanced filtering .. 28

Advanced prompting ... 30

Prompt values in report header ... 31

Prompt Pages .. 32

Editing queries & multiple queries ... 33

Charts .. 34

Set a report as your Manager Services home page ... 34

HCA Security .. 34

HCA Dashboards ... 35

Available dashboards .. 35

Dashboard security ... 35

Dashboard data ... 36

How to interact with a dashboard .. 36

Expand visualizations ... 36

Selecting data .. 36

Resetting the dashboard .. 38

Applying other filters .. 39

Drill through to employee details ... 39

Analytics.. 40

Forecast .. 41

Insights .. 41

Narrative Insights ... 41

Set a dashboard as your Manager Services home page ... 42

Sharing dashboards .. 43

Contact us .. 45

Appendix A – Using the expression editor ... 46

Operators .. 46

Constants.. 53

4

Constructs .. 55

Business date/time functions ... 56

Summaries ... 61

Common functions .. 66

Report functions ... 72

Data type casting functions .. 77

Appendix B – Common errors .. 85

5

HCA Reporting

This document is intended for use with Unicorn HCM’s Human Capital Analytics (HCA) Reporting solution.

Unicorn HCM’s HCA Reporting offering provides users with powerful solutions for analyzing & monitoring

benefit, human resources and payroll information that is stored and managed in the HCM application.

HCA Reporting is the portal to HCM reporting and is based on IBM Cognos Analytics software. A user can

use the tool to run reports and dashboards, author ad hoc reports, distribute and schedule reports.

Accessing HCA Reporting

You must have Manager Services function security to HCA Reporting in order the run reports and
dashboards. Users that need the ability to author or edit reports must have function security to HCA Author.
See HCA Author.

In Manager Services, start HCA Reporting by clicking the HCA Reporting tile or navigate to the Tools > HCA

Reporting menu item.

Layout

The Application Bar runs along the top. It provides access to Help, personal menus including Schedules

and Sign Out as well as a view switcher.

The Content View has tabs to help you access reporting content. There is a tab with your recently run

reports, a tab with your selected favorites, a tab going to a folder for your customer and tabs for accessing

the standard dashboards and reports. The “View all content” link will open the full content view.

6

The Open Menu provides access to exiting content, creating new reports or to see recently run reports. You

can navigate with in your personal My Content folder or navigate thru Shared content from here.

The Content menu item opens the Content View where you can navigate between your existing personal

content in the “My Content” folder and shared and standard content under “HCM Content”. The Context

Menu may display Folders or Reports, depending on what is selected. The top line of the Context Menu

provides a trail for navigating around the folder hierarchy.

Tip: If you have several reports open you can use the View Switcher drop down in the Application Bar to

navigate between open reports and dashboards.

7

The Action Menu is a flyout menu that provides access to features that are relevant to the selected item.

The available items will be different depending on the user’s security rights or the object selected.

Help

Links to HCA Reporting specific user guides are available under the Links icon in the Application bar.

IBM Help is available in the Learn section in the upper right corner of the Application bar.

8

Finding reports

Reports will be available in 3 possible locations.

My Content – this folder is visible only to the user. Reports saved here will only be available to the current

user.

Customer Shared Folder – this folder is visible to all user for the customer. This folder will be in this location:

Team Content > HCM Content > Reports > Customer Folder > {customer number} > Shared.

Cognos Group folder – this folder is visible to only users defined in a Security Group. Groups and

memberships are defined in the HCA Security function. These folder locations will be: Team Content >

HCM Content > Reports > Customer Folder > {customer number} > Groups > {group name}.

You can use Search to find reports by Name. The “Search content” box is on the right side of the

Application Bar. The search will return a list of objects and their location. You can use the filter icon to further

refine your results.

Recently run reports will be listed on the Portal homepage. Recently run reports are also available under the

Recent items entry on the navigation bar.

9

Viewing and interacting with reports

Navigate to a report or search and find a report in the Recent, Shared, Groups or My content folder, you

can then click on the report name to run the report.

The report opens in a viewer. When a report runs in the interactive viewer, you also have options to see

different data in the report by filtering, drilling up and down, and more.

Or from the entry context menu , click Run as. You can then choose the output format.

Copying or moving reports

When you create a copy of an entry, you create a replica of that entry in another location in the portal. When

you move an entry, you remove it from the current folder and place it in another folder. When you copy and

move entries, the IDs and links are either maintained or overwritten. You must have read permissions for the

entry that you are attempting to copy or move. You must also have permissions for the current folder, and

write permissions for the target folder.

1. Navigate to the report. From the entry context menu , click Copy or move.

2. Locate the target folder, and click Copy to.

Setting the package for a report

If you copy a report to a new environment you may need to set the package associated with the report to the

customer number currently logged into. An example is copying a report from Live to Test.

1. Navigate to the report. From the entry context menu , click Properties.

2. Under General > Advanced, Use the “Set” link under “Source Package or data module” to change

the Source Package. Select the package for the customer currently logged into. See Selecting a

Package.

Renaming a report

1. Navigate to the report. From the entry context menu , click Properties.

2. Click the report name field at the top of the Properties pane. This will place the cursor in the name

field, edit the name as desired.

10

Share your content by email

You can share Cognos® Analytics content in an email. When you are viewing your content, click the Share

button .

Scheduling a report

You schedule an entry, such as a report, to run it later or at a recurring date and time.

Only one schedule can be associated with each entry. If you require multiple schedules for a report, you can

create report views, and then create a schedule for each view or create copies of the report.

1. Click the entry context menu , and then click Properties.

2. In the Properties pane, click the Schedule tab, and then click Create Schedule.

3. In the Create schedule pane, specify the frequency, options & saved prompt values (if required).

Set up any email recipients under the Options tab > “Send report by email” > “edit details”.

If you no longer need a schedule, you can delete it. You can also disable schedules without losing any of the

scheduling details. The schedules can be enabled later.

11

My schedules and subscriptions

You can view all your scheduled activities and subscriptions on the My schedules and

subscriptions panel.

You can view a list of your scheduled activities that are current, past, or upcoming on a specific day. You

can filter the list so that only the entries that you want appear. A bar chart shows you an overview of daily

activities, by hour. If you switch views, you must refresh to see current data. For example, if you switch

from Past Activities to Upcoming Activities, you must refresh to see current data in the panes.

You can see the My schedules and subscriptions option in the Personal menu .

1. In the application bar, click your user name icon , and then click My schedules and

subscriptions.

2. To see both a listing and a graph of your schedules and subscriptions for a specific time frame,

click the Type button and then click Upcoming, Past, or Current.

3. To perform actions on a schedule or subscription in the list, click the More button next to the

list item, and then click an action.

12

Renewing credentials used for scheduled reports

If you change your password in Manager Services and need your Cognos schedules to run immediately, you

need to renew the credentials Cognos stores to run your schedules. If a schedule tries to run with saved

credentials that no longer match the user’s current HCM credentials, the schedule will fail.

Cognos automatically renews credentials once per day, but that is not quick enough in all situations. Using

the Renew link under My preferences will allow a user to update the credentials stored by Cognos for use

with schedules on demand.

You can see the My preferences option in the Personal menu .

1. In the application bar, click your user name icon , and then click My preferences.

2. The “Renew” link is under Personal Menu > My Preferences > Personal Tab > Advanced.

13

HCA Author

You must have function security to HCA Author in order to create or edit reports.

Creating a report

Create a report by clicking the Open Menu in the HCA Reporting portal, select + New and then
clicking Report.

Templates and themes

IBM Cognos Analytics includes several basic report templates and color themes that you can choose from

when you create a new report.

Hint: Selecting the “List” template will give you a template similar to prior versions of Cognos.

14

Selecting a package

Add data to a report by loading packages in IBM Cognos Analytics - Reporting.

1. Click the Sources icon .

2. Click the Add report data icon or the Select a source button.

3. Select the package that you want.

Look for a package matching your customer number in the HCM Content > Packages folder. Browse to

HCM Content > Packages, select the package, then click Open.

15

Insertable objects

Sources tab

The Sources tab contains items from the package selected for the report, such as data items

and calculations.

Search through the sources by typing a value in the Find field. As you type, the items that match

your search string appear in the tab.

Data Items tab

The Data Items tab shows the queries in the report.

Toolbox tab

The Toolbox tab contains various objects that you can add to a report, such as visualizations,

text, layout objects, and prompts. You can also add advanced objects such as custom controls and

hyperlinks. Depending on the type of object, you can drag it from the Toolbox to the canvas or

double-click it to open a window in which you define values for the object. When the object is placed

on the canvas, its properties are displayed in the Properties pane.

Search through the objects by typing a value in the Find field. As you type, the items that match your

search string appear in the tab.

Toolbox items are organized into groups. Click to show all of the items available in each group

or to collapse the groups. Click to toggle between a list view or a tree view of the items in

the groups.

16

Add items that you use often to the PINNED group. Items in the PINNED group appear in the Add

circular menu icon on the canvas when you create a new report. To add a toolbox item to

the PINNED group, right-click the item and click Add to pinned toolbox items. To remove an item

from the PINNED group, right-click the item and click Remove from pinned toolbox items.

Tip: You can use a Query Calculation from the toolbox to create a new column in a List report.

17

Add relational data to a report

Select the data items to appear in the report.

1. From the Source tab ., drag each query item to the report.

Note: A flashing black bar indicates where you can drop an item. Items inserted in the report

appear on the Data Items tab .

Other ways to select data items are to double-click each item or to right-click each item and

click Insert.

2. If you want to remove a data item from the report, select it, and in the report object toolbar, click

the More icon and then click the Delete option . To remove the data item from the report

but keep it on the Data Items tab , click Cut instead.

3. For more information about a query item, right-click the item in the Source tab and

click Properties. You can also obtain more information by clicking Lineage.

Data organization

Available data is organized to match the functions available in HCM Manager Services. A user will only be

able access data for which they have at least read permission to in Manager Services.

18

Tips:

Key employee data is stored in 2 main query subjects. Fields like the employee’s name, organization, job

title, birth date, etc. are stored in query subjects that match equivalent functions in Manager Services.

 Ad Hoc>Personal Information>Demographics

 Ad Hoc>Employment Info>Work Profile

Query Subjects with (Current), (Last), (Current Year), etc. appended to the name are pre-filtered versions of

the query subjects designed to make it easier for you to find commonly needed information without having to

apply your own filters. For example, “Ad Hoc>HR Actions>Employment Status (Current)” is pre-filtered to

only the employee’s current status where as “Ad Hoc>HR Actions>Employment Status” contains every

status an employee has ever had.

There are 4 different folders for Payment History. These all include the same fields and come from the same

source. Each one has a different set of required filters. Choose the one the best fits your needs, whether the

report is based on Pay Ending Date or Check Date. For best performance use the query subjects that

include a Legal Entity prompt.

Always start Payment History reports with fields from the Check History Master. These query subjects

contain the unique “header” record for each check.

HCM stores accumulated payroll data. If you need payroll numbers across fixed calendar time frames like

YTD or Quarter, this data can be retrieved from accumulator query subjects instead of Payment History.

Accumulator query subjects store data by Legal Entity and Tax Year. The “Misc Payroll” query subjects are

the header records for the accumulators. As a result, an example would be a filter applied for the Tax Year

in Misc Payroll would also filter the tax year of any accumulator query subject included on the report. For

earnings accumulators, use fields from the Pay Distribution folder and don’t include the G/L Account field.

The amounts per pay type will automatically be aggregated together for you.

Searching for fields

You can use the Find area above the package to find fields in the package.

Hover the cursor over the query items returned by the search to view which query subject the field belongs

to. It is important to choose the item from the query subject most appropriate for the report.

19

Tip: If you know where a field is displayed on a screen in Manager Services. Look for a folder in the

reporting tool that has the same name as the function in Manager Services. This is where you should find

the field in the reporting tool.

20

Data Security

Record-level security is based on the security method (Org Level Security, Reports To Security) configured

in HCM. This prevents end-users from seeing employee data that they do not have permission to view,

including compensation data.

Query subject availability follows Function Security in HCM Manager Services (function security controls

what types of data an end-user can add, view, edit and delete for the employees they have access to in

HCM). If a given HCM user doesn’t have read access to a function in MS, they won’t see that type of data in

insertable objects for report authoring and won’t be able to view that type of data in a report.

If an end-user has “No Salary” permission set in Organization Security, they will not be able to see

compensation related data. The Salary field in the following query subjects will be zero in this situation:

Salary History, Salary Changes.

The Social Security Number field will be empty unless “Display Social Security Numbers in Manager

Services” is selected in HR System defaults and the user has Function Security to the Demographics

function OR “Display Social Security Numbers in Manager Services” is not selected but the user has

Function Security Update permission to the Demographics or Misc Payroll functions.

The “Report Security Update” function should be run after any organization security change in Manager

Services. This will update the record level permissions used in Ad Hoc reporting. Otherwise, the changes

will be applied to report security in a nightly process.

Viewing results

After adding fields to the report, you can run the report or view a Preview of the results.

In the application bar, click Run options , chose the format to run the report in. The report viewer will run

in a separate tab. If the report has prompts, you will be prompted for values.

21

To see a preview of the report results, change the view from Page Design to Page Preview.

Report authoring layout

The Report Object Toolbar gives access to features such as cut, paste, filtering, sorting, grouping and

formatting.

Properties for the selected object are shown in the Properties pane. If properties are not visible click the

show properties icon . You can also navigate to other object properties by using the object drop down list

at the top of the Properties pane.

To navigate between report elements, pull down the Report drop down in the upper left. Under this drop

down you can navigate to other elements, like the query or queries used in the report.

Saving a report

In the application bar, when you view a report, tap either , or . The location of the save option

depends on the type of report you view.

You also have the Save as option of saving the report version under a different name or in a different

location.

22

Save Locations:

My Content – this folder is visible only to the user. Reports saved here will only be available to the current

user.

Customer Shared Folder – this folder is visible to all user for the customer. Save a report here if you wish to

share it with other users. This folder will be in this location: Team Content > HCM Content > Reports >

Customer Folder > {customer number} > Shared.

Cognos Group folder – this folder is visible to only users defined in a Security Group. Save a report here if

you only want a select set of users to access the report. Groups and memberships are defined in the HCA

Security function. These folder locations will be: Team Content > HCM Content > Reports > Customer

Folder > {customer number} > Groups > {group name}.

Editing an existing report

Navigate to the report in the portal, from the entry context menu , click Edit Report.

Alternatively, run the report by clicking the report name. Once the report is open choose Edit

 in the application bar.

Creating a filter

Use the Create Custom Filter option to create a simple filter based on one data item.

On the canvas, select the item in the report that you want to filter on, and in the on-demand

toolbar, click the Filters icon , and then click Create Custom Filter.

For all types of filters, there are some common settings you can define.

Click Settings and then do the following steps:

a. To prompt for filter values when the report is run, select Prompt for values when

report is run in viewer, and type a name for the prompt.

23

b. To allow the filter criteria to be changed in the viewer, select Filter can be changed in

the viewer.

Click OK when you're finished defining the filter conditions.

Create a filter with a prompt:

To make the use of a prompted filter optional, so that a value is not required to be selected for the

report to run, set Usage to Optional on the Edit filters screen.

24

Edit or remove a filter

After you created filters, you can edit or remove them.

1. Click a data container object that contains a filter.

2. To remove all filters from the object, in the report object toolbar, click the Filters icon and

click Remove All Filters.

3. To edit a filter or remove a single filter, in the report object toolbar, click the Filters icon and

click Edit Filters.

Edit Filters window:

 to add a new filter

 to remove the selected filter

 to edit the selected filter

Tip: Change Usage to Optional if a selection is not required for a prompted filter.

Sorting relational data

You can sort items to view them in your preferred order. You can sort items in a list in ascending or

descending order based on a value or a label, such as revenue or employee name. You can also perform

advanced sorting to sort columns within groups or to sort a row or column using another data item.

1. Click the column or row on which to sort.

2. In the report object toolbar, click the Sort icon and click Ascending or Descending.

An arrow appears beside the data item to indicate that a sort order was set.

25

When you specify a sort order for more than one column, the columns are sorted in the order in

which they were inserted in the report. For example, you add columns A, B, and C to a report and

specify a sort order for each. When you run the report, column A is sorted first, then column B,

and then column C. You can change the order in which the columns are sorted in the Edit Layout

Sorting options.

Tip: To remove a sort order, click Don't Sort.

Group relational data

Group data items in a list report to remove duplicate values. For example, you have a report that shows all

the products purchased and their product type. You group the Product type column so that each product

type cell spans the products purchased cells.

After a column is grouped, you can move it elsewhere in the report.

1. Click the column(s) on which to group.

You can click either the column title or one of the column cells.

Tip: To perform multiple groupings at once, use Ctrl+click or Shift+click.

2. In the report object toolbar, click Group/Ungroup .

Add a simple summary

You can add simple summaries to the groups in a report by using the summarize icon in the report object

toolbar. This icon provides a subset of the summary functions available in IBM® Cognos® Analytics -

Reporting. For list reports, a Custom option is also available so that you can add your own summary

function in the expression of the data item.

In lists, the summary appears as a footer. If the column to which you added a summary is grouped, group

and overall summaries appear. In crosstabs and charts, the summary appears as a node.

To change a summary, select it, click the Show properties icon , and in the Properties pane,

under Data Item, click the Summary property and choose a different function.

1. Click the column to which to add a summary.

2. In the report object toolbar, click the Summarize icon and click a summary type.

3. To change the summary label, do the following:

o Click the label.

o Click the Show properties icon, and In the Properties pane, under Text Source, set

the Source type property to the source type to define the label.

26

o Set the property under Source type to specify the label. This property depends on the

source type you chose. For example, if you chose Data item value as the source type,

set the Data item value property to the data item to use to define the label.

Format data

Format data in a report to improve readability. If you do not set Data Format properties here, data is

formatted according to the properties set in the model.

Data formats are not applied in delimited text (CSV) and XML report outputs.

1. Click the object.

2. In the report object toolbar, click the Data format icon .

Tip: You can also click the Show properties icon , and then double-click the Data

format property.

3. Under Format type, click the format type to apply to the object.

4. To override any of the properties of the format type that were defined for the current layout, in

the Properties box, click the property and specify its value.

Edit column header

Select the header to modify then in the report design tool bar, select More (…) then “Edit Data Item

Label…”. Set the Data Item Label to the desired text.

Tip: The browser window may need to be maximized to see the More button.

27

Calculations

To add a new column to a list report, go to the Toolbox and drag a Query Calculation into the List.

In the Expression Definition box, build the expression using fields from the source package, existing fields

from the query or type in your own values. Available options are contained in the tabs below “Available

Components”. Use single quotes (‘) to encapsulate string values.

For a list of available functions and constants see the Functions tab. These are also listed in Appendix A .

28

Tip: You can use if..then statements to display data in rows instead of columns. This is an example of

creating an Overtime column.

Advanced filtering

There are multiple ways to add advanced filters to a report. One option is to use the Filters menu and

selecting “Edit Filters…”.

On the filters screen, add a filter by clicking the “+” button. You can then choose Combined or Advanced.

29

With Combined, you can use a wizard like interface to combine multiple filters with AND/OR statements.

With Advanced, you will get an empty Expression Definition where you can build your own filter statement.

For a list of available functions and constants see the Functions tab. These are also listed in Appendix A .

You can AND/OR to combine multiple statements in one filter.

You can also create an advanced filter by navigating to the Query and dragging a Filter object from the

Toolbox the Detail Filters area. You can then create your own filter in the Expression Definition window.

30

Advanced prompting

In addition to the standard prompting available on filters, there are other ways to generate prompts for an

advanced filter.

For basic text prompts, values within question marks (?) will be prompted. For example:

For more advanced custom prompts, the prompt function can be used. This allows for the definition of the

prompt text and other elements of a prompt, like specifying it is a date prompt. The simple syntax is

#prompt(‘{text}’,’{data type}’)#.

Examples:

o #prompt('Enter a Year', 'integer')#

o #prompt('Age on Date', 'date')#

31

Prompt values in report header

If you have prompt values you wish to display in the report output, one easy way to do this is to add a Layout

Calculation to the header. From Toolbox drag a Layout Calculation into the report header. Go to the

parameters tab of the Layout calculation window. Double click on the parameter you want to add to the

header. It will be added to the expression with the ParamDisplayValue function already included. If you want

text before the parameter value you can add it before the ParamDisplayValue function. Use single quotes

and + to concatenate the text to before the prompt value.

Tip: You can also use a Table object from the Toolbox if you want to organize displaying multiple prompt

values.

32

Prompt Pages

For full control over the look of prompts, the prompts can be presented via a prompt page. To add a prompt

page, navigate to “Prompt pages” under the Report pulldown and drag in a Page from the Insertable objects

or click the + icon next to Prompt pages.

Use Table, Text items & Prompt objects to build out the page.

The prompt page will appear before the report runs.

33

Editing queries & multiple queries

To access the query or queries for a report, navigate to Queries under the Report pulldown.

Fields can be added or removed from the query and advanced filters added or removed.

In some cases, a report may require data to be related in ways not defined or supported in the underlying

meta data model. Cognos allows a user to define sets of data via queries and then define the relationship of

these data sets with custom joins. A user must understand relational database concepts in order to create

and define these join relationships. Navigate to Queries under the Report pulldown to add & edit queries and

joins.

34

Charts

Charts and graphs can also be included in Ad Hoc reports. Add a Visualization from the Toolbox in order to

add a chart to a report.

Set a report as your Manager Services home page

To set a report as your home page in Manager Services, do the following steps:

• Create a folder named Homepage in your Shared and/or My Content folders in Cognos.

• Move or copy the desired report into this Homepage folder.

• Go to the My Account screen in Manager Services and under the Home Page drop down,

select the report. Reports in the Homepage folders will be able to be selected in the Home

Page drop down list on My Account.

HCA Security

Use the HCA Security function in Manager Services to create secured group folders to share reports with

just selected users. When an HCA Security group is created, a folder by that name is created in HCM

Content > Reports > Customer Folders > {customer number} > Groups > {group name}. Only users selected

under “users” in the HCA Security function for that group will have access to this folder. Copy or move and

any report you want to share with the group to this folder.

Any user with function security to HCA Security is considered and HCA Security Admin and can see the

contents of any of the customer’s group folders.

35

HCA Dashboards

Human Capital Analytics (HCA) Dashboards provide an interactive means of monitoring, measuring, and

analyzing key Benefit, HR and Payroll information that is stored and managed in the HCM application. The

information is displayed in an interactive, intuitive, and visual way within the HCM Manager Services

application. HCA Dashboards will help provide insights to tackle critical human capital challenges.

A library of Standard Dashboards is provided within the HCA Reporting tool. This provides a quick and easy

way for users to see visualizations of their HCM data. The user will only need to click on the dashboard

name to run it. Additionally, a dashboard can be set as the user’s Manager Services home page so that

relevant data can be easily viewed when entering the Manager Services application.

Available dashboards

You can find dashboards in HCA Reporting under HCM Content > Reports > Standard Dashboards.

Dashboard security

Similar to Ad Hoc reports written using HCA Reporting, HCM organization security is applied to all HCA

Dashboards. A user will only be able to see counts of employees on dashboards that correlate with the

employees that they can view in Manager Services. For example, if a user can only view 10 employees in

Manager Services then the visualizations in the dashboards will only represent the data for those 10

employees.

Salary Security is enforced. If a user has ‘No Salary’ access to an employee, then that employee’s salary

fields will be 0 in the detail reports and their data will not be included on Salary related visualizations on

dashboards.

Function security is enforced on the dashboard level. A user must have function security to Work Profile to

see the HR Dashboard. A user must have function security to Benefit Enrollment to see the Benefit

Dashboard. A user must have function security to Payment History to see the Payroll Dashboards. A user

must have function security to Salary History or Salary Change to see the Salary Dashboards.

36

Dashboard data

Dashboard data is retrieved from a data warehouse that is refreshed nightly. Same day transactions will not

be displayed and should not make significant changes to most visualizations.

Dashboard data will also not be available for Test environments.

How to interact with a dashboard

To run a dashboard, simply navigate to a dashboard in HCA Reporting and click on the dashboard name.

Each dashboard is a collection of visualizations. Related visualizations may be organized by tabs. A

dashboard may also be organized into multiple tabs. For the HR Dashboard, you will see 5 tabs. Click on

each tab to see different sets of visualizations.

Expand visualizations

To see a larger version of a single visualization, click on the visualization to select it. Then click the expand

icon.

Click the Collapse icon to return to the original size.

Selecting data

Selecting data in a visualization will update all other visualizations to be filtered by the element clicked.

For example, clicking the “Active Part Time” slice of the Employment Status Pie will cause the other

visualizations to update to represent just the Active Part Time employees.

37

Before:

After clicking on the Active Part Time slice. Notice the other visualizations have updated to just show data

for the 9 APT employees in this example.

By clicking the Filter icon on the visualization, you can see “Active Part Time” has been applied to all

objects.

38

Resetting the dashboard

To get back to the full data in visualizations:

- click on the white space of a visualization

- click x for any filters under All objects (as seen above)

- click the “Reset dashboard” on the top left of the dashboard.

Reset dashboard:

39

Applying other filters

Additional filters maybe applied if available in filter header.

For example, the Organizations filter maybe used to limit data to just certain organization levels.

Drill through to employee details

To see detail data on the employees that make up the selected data element you can drill through to a detail

report. To do this, right click on a data element in a visualization and select the “Drill through” link.

40

In this example, clicking the Drill Through report icon will take you to a list of the 494 Active Full Time

employees. Hit the back button on the browser to return to the dashboard.

Analytics

To see further insights into the data, select a visualization and then select the Analytics icon.

41

Forecast

For Trend data you can use Forecast to see the values forecasted for the next 3 months. Select the

Forecast icon on the visualization. Options can be selected to adjust the forecast. For example,

if we are just beginning the current month you might want to set the “Ignored last periods” to 1 in order to not

include the current partial month in the forecast. Select a single line to see a forecasted range of values.

Insights

To see further insights into the data, such as average values, select the Insights icon .

Narrative Insights

To view textual descriptions of highlights in the data, select a visualization and then select the Narrative

insights icon .

42

Set a dashboard as your Manager Services home page

You have the ability to set a dashboard as your Manager Services home page.

Go to Manager Services “My Account” page. Under Preferences > Home Page, select the name of the

Dashboard you want as your home page.

**Note: You don’t have to wait for the dashboard to finish loading before using other parts of Manager

Services.

HR Dashboard as the Manager Services home page:

43

Sharing dashboards

In order to share a dashboard via email or export it to a PDF, the dashboard must be run in HCA Reporting.

It can’t be done from the Manager Services home page.

Open the dashboard in HCA Reporting, expand the Share menu.

To export to PDF choose the Export tab

To include a picture of the dashboard in an email, choose the Send tab.

44

PDF:

Email:

45

Contact us

If you require additional technical support for this or any other HCM product, please contact HCM Support.

All client questions and assistance requests should be initiated in our Customer Support Portal,

ConnectWise.

Please log in to ConnectWise and open a support ticket for your request

(https://unicornhcm.myportallogin.com).

46

Appendix A – Using the expression editor

An expression is any combination of operators, constants, functions, and other components that evaluates

to a single value. You build expressions to create calculation and filter definitions. A calculation is an

expression that you use to create a new value from existing values that are contained within a data item. A

filter is an expression that you use to retrieve a specific subset of records. Build expressions that use the

following components.

Tip: When building expressions, the functions listed in Appendix A can also be found under the Functions

tab.

Operators

Operators specify what happens to the values on either side of the operator. Operators are similar to

functions; in that they manipulate data items and return a result.

(
Identifies the beginning of an expression.
Syntax:
(expression)

)
Identifies the end of an expression.
Syntax:
(expression)

*
Multiplies two numeric values.
Syntax:
value1 * value2

,
Separates expression components.
Syntax:
expression (parameter1, parameter2)

47

/
Divides two numeric values.
Syntax:
value1 / value2

||
Concatenates, or joins, strings.
Syntax:
string1 || string2

+
Adds two numeric values.
Syntax:
value1 + value2

-
Subtracts two numeric values or negates a numeric value.
Syntax:
value1 - value2
or
- value

<
Compares the values that are represented by "value1" against "value2" and
retrieves the values that are less than "value2".
Syntax:
value1 < value2

<=
Compares the values that are represented by "value1" against "value2" and
retrieves the values that are less than or equal to "value2".
Syntax:
value1 <= value2

<>
Compares the values that are represented by "value1" against "value2" and
retrieves the values that are not equal to "value2".
Syntax:
value1 <> value2

=
Compares the values that are represented by "value1" against "value2" and
retrieves the values that are equal to "value2".
Syntax:
value1 = value2

>
Compares the values that are represented by "value1" against "value2" and
retrieves the values that are greater than "value2".
Syntax:
value1 > value2

48

->
Separates the components in a literal member expression.
Syntax:
[namespace].[dimension].[hierarchy].[level]->[L1]

>=
Compares the values that are represented by "value1" against "value2" and
retrieves the values that are greater than or equal to "value2".
Syntax:
value1 >= value2

and
Returns "true" if the conditions on both sides of the expression are true.
Syntax:
argument1 and argument2

auto
Works with summary expressions to define the scope to be adjusted based on the
grouping columns in the query. The scope is context-dependent.
Syntax:
aggregate_function (expression AUTO)

between
Determines if a value falls in a given range.
Syntax:
expression between value1 and value2
Example:
[Revenue] between 200 and 300
Result
Returns the number of results with revenues between 200 and 300.

case
Works with when, then, else, and end. Case identifies the beginning of a specific
situation, in which when, then, and else actions are defined.
Syntax:
case expression { when expression then expression } [else
expression] end

contains
Determines if "string1" contains "string2".
Syntax:
string1 contains string2

currentMeasure
Keyword that can be used as the first argument of member summary functions.
Syntax:
aggregate_function (currentMeasure within set expression)

default
Works with the lookup construct.
Syntax:
lookup (....) in (....) default (....)

49

distinct
A keyword used in an aggregate expression to include only distinct occurrences of
values. See also the function unique.
Syntax:
distinct dataItem
Example:
count (distinct [OrderDetailQuantity])

else
Works with the if or case constructs. If the if condition or the case expression are
not true, then the else expression is used.
Syntax:
if (condition) then else (expression) , or case else (
expression) end

end
Indicates the end of a case or when construct.
Syntax:
case end

ends with
Determines if "string1" ends with "string2".
Syntax:
string1 ends with string2

escape
Determines if "string1" matches the pattern of "string2", with the character "char"
optionally used to escape characters in the pattern string.
Syntax:
string1 LIKE string2 [ESCAPE char]
Example 1:
[PRODUCT_LINE] like ’G%’
Result:
All product lines that start with 'G'.
Example 2:
[PRODUCT_LINE] like ’%Ga%’ escape ’a’
Result:
All the product lines that end with 'G%'.

for
Works with summary expressions to define the scope of the aggregation in the
query.
Syntax:
aggregate_function (expression for expression { , expression })

for all
Works with summary expressions to define the scope to be all the specified
grouping columns in the query. See also the for clause.
Syntax:
aggregate_function (expression for ALL expression { , expression })

for any
Works with summary expressions to define the scope to be adjusted based on a

50

subset of the grouping columns in the query. Equivalent to the for clause.
Syntax:
aggregate_function (expression for ANY expression { , expression })

for report
Works with summary expressions to set the scope to be the whole query. See also
the for clause.
Syntax:
aggregate_function (expression for report)

if
Works with the then and else constructs. If defines a condition; when the if
condition is true, the then expression is used. When the if condition is not true, the
else expression is used.
Syntax:
if (condition) then (expression) else (expression)

in
Determines if "expression1" exists in a given list of expressions.
Syntax:
expression1 in (expression_list)

in_range
Determines if "expression1" exists in a given list of constant values or ranges.
Syntax:
expression1 in_range { constant : constant [, constant :constant] }
Example 1:
[code] in_range { 5 }
Result:
This is equivalent to [code] = 5.
Example 2:
[code] in_range { 5: }
Result:
This is equivalent to [code] >= 5.
Example 3:
[code] in_range { :5 }
Result:
This is equivalent to [code] <= 5.
Example 4:
[code] in_range { 5:10 }
Result:
This is equivalent to ([code] >= 5 and [code] <= 10).
Example 5:
[code] in_range { :5,10,20: }
Result:
This is equivalent to ([code] <= 5 or [code] = 10 or [code] >= 20).

is missing
Determines if "value" is undefined in the data.
Syntax:
value is missing

is null

51

Determines if "value" is undefined in the data.
Syntax:
value is null

is not missing
Determines if "value" is defined in the data.
Syntax:
value is not missing

is not null
Determines if "value" is defined in the data.
Syntax:
value is not null

like
Determines if "string1" matches the pattern of "string2", with the character "char"
optionally used to escape characters in the pattern string.
Syntax:
string1 LIKE string2 [ESCAPE char]
Example 1:
[PRODUCT_LINE] like ’G%’
Result
All product lines that start with 'G'.
Example 2:
[PRODUCT_LINE] like ’%Ga%’ escape ’a’
Result
All the product lines that end with 'G%'.

lookup
Finds and replaces data with a value you specify. It is preferable to use the case
construct.
Syntax:
lookup (name) in (value1 --> value2) default (expression)
Example:
lookup ([Country]) in (’Canada’--> ([List Price] * 0.60),
’Australia’--> ([List Price] * 0.80)) default ([List Price])

not
Returns TRUE if "argument" is false or returns FALSE if "argument" is true.
Syntax:
NOT argument

or
Returns TRUE if either of "argument1" or "argument2" are true.
Syntax:
argument1 or argument2

prefilter
Performs a summary calculation before applying the summary filter.
Syntax:
summary_function ([expression] prefilter)
Example:
total ([Quantity] for report prefilter)

52

summaryFilter: total(
[Quantity] for [ProductNo]) > 50000
Result
Sums the quantities in a report before the summary filter is applied.

rows
Counts the number of rows output by the query. Use with Count ().
Syntax:
count (ROWS)

starts with
Determines if "string1" starts with "string2".
Syntax:
string1 starts with string2

then
Works with the if or case constructs. When the if condition or the when expression
are true, the then expression is used.
Syntax:
if (condition) then ..., or case expression when expression then end

when
Works with the case construct. You can define conditions to occur when the
WHEN expression is true.
Syntax:
case [expression] when ... end

53

Constants

A constant is a fixed value that you can use in an expression.

date
Inserts the current system date.

date-time
Inserts the current system date and time.

time with time zone
Inserts a zero time with time zone.

timestamp with time zone
Inserts an example of a timestamp with time zone.

interval
Inserts a zero interval: 000 00:00:00.000.

interval year
inserts a zero year interval: 0 year.

interval month
Inserts a zero month interval: 0 month.

interval year to month
Inserts a zero year to month interval: 0000-00 year to month.

interval day
Inserts a zero day interval: 0 day.

interval hour
Inserts a zero hour interval: 0 hour.

interval minute
Inserts a zero minute interval: 0 minute.

interval second
Inserts a zero second interval: 0 second.

interval day to hour
Inserts a zero day to hour interval: 0 00 day to hour.

interval day to minute
Inserts a zero day to minute interval: 0 00:00 day to minute.

interval day to second
Inserts a zero day to second interval: 0 00:00:00.000000000 day to second.

interval hour to minute
Inserts a zero hour to minute interval: 00:00 hour to minute.

interval hour to second

54

Inserts a zero hour to second interval: 00:00:00.000000000 hour to second.

interval minute to second
Inserts a zero minute to second interval: 00:00.000000000 minute to second.

null
Inserts "null" if the expression conditions are not met.

number
Inserts the number 0, which can be replaced with a new numeric value.

string
Inserts an empty string as two single quotation marks between which you can type a string.

time
Inserts the current system time.

55

Constructs

This list contains constructs and templates that can be used to create an expression. Templates combine

multiple functions into a group. For example, the search case template includes the case, when, else, and

end functions.

if then else
This construct is the template for an if...then...else statement.
Syntax:
IF ([Country] = ’Canada’) THEN ([List Price] * 0.60) ELSE ([List Price])

in_range
This is the template for an in_range expression.
Syntax:
[code] IN_RANGE { :30 , 40, 50, 999: }
Example 1:
[code] IN_RANGE { 5 }
Result:
This is equivalent to [code] = 5.
Example 2:
[code] IN_RANGE { 5: }
Result:
This is equivalent to [code] >= 5.
Example 3:
[code] IN_RANGE { :5 }
Result:
This is equivalent to [code] <= 5.
Example 4:
[code] IN_RANGE { 5:10 }
Result:
This is equivalent to ([code] >= 5 and [code] <= 10).
Example 5:
[code] IN_RANGE { :5,10,20: }
Result:
This is equivalent to ([code] <= 5 or [code] = 10 or [code] >= 20).

search case
This construct is the template for a search case, including the CASE, WHEN, ELSE and END functions.
Syntax:
CASE WHEN [Country] = ’Canada’ THEN ([List Price] * 0.60) WHEN
[CountryCode] > 100 THEN [List Price] * 0.80 ELSE [List Price] END

simple case
This construct is the template for a simple case, including the CASE, WHEN, ELSE and END functions.
Syntax:
CASE [Country] WHEN ’Canada’ THEN ([List Price] * 0.60) WHEN
’Australia’ THEN [List Price] * 0.80 ELSE [List Price] END

56

Business date/time functions

This list contains business functions for performing date and time calculations.

_add_seconds
Returns the time or datetime, depending on the format of "time_expression", that
results from adding "integer_expression" seconds to "time_expression".
Syntax:
_add_seconds (time_expression, integer_expression)
Example 1:
_add_seconds (13:04:59 , 1)
Result:
13:05:00
Example 2:
_add_seconds (2002-04-30 12:10:10.000, 1)
Result:
2002-04-30 12:10:11.000

_add_minutes
Returns the time or datetime, depending on the format of "time_expression", that
results from adding "integer_expression" minutes to "time_expression".
Syntax:
_add_minutes (time_expression, integer_expression)
Example:
_add_minutes (13:59:00 , 1)
Result:
14:00:00

_add_hours
Returns the time or datetime, depending on the format of "time_expression", that
results from adding "integer_expression" hours to "time_expression".
Syntax:
_add_hours (time_expression, integer_expression)
Example 1:
_add_hours (13:59:00 , 1)
Result:
14:59:00
Example 2:
_add_hours (2002-04-30 12:10:10.000, 1)
Result:
2002-04-30 13:10:10.000,

_add_days
Returns the date or datetime, depending on the format of "date_expression", that
results from adding "integer_expression" days to "date_expression".
Syntax:
_add_days (date_expression, integer_expression)
Example 1:
_add_days (2002-04-30 , 1)
Result:
2002-05-01
Example 2:
_add_days (2002-04-30 12:10:10.000, 1)

57

Result:
2002-05-01 12:10:10.000

_add_months
Adds "integer_expression" months to "date_expression". If the resulting month has
fewer days than the day of month component, then the last day of the resulting
month is returned. In all other cases the returned value has the same day of month
component as "date_expression".
Syntax:
_add_months (date_expression, integer_expression)
Example 1:
_add_months (2012-04-15 , 3)
Result:
2012-07-15
Example 2:
_last_of_month (_add_months (2012-02-29 , 1))
Result:
2012-03-31

_add_years
Adds "integer_expression" years to "date_expression". If the "date_expression" is
February 29 and resulting year is non leap year, then the resulting day is set to
February 28. In all other cases the returned value has the same day and month as
"date_expression".
Syntax:
_add_years (date_expression, integer_expression)
Example:
_add_years (2012-04-15 , 1)
Result:
2013-04-15

_age
Returns a number that is obtained from subtracting "date_expression" from today's
date. The returned value has the form YYYYMMDD, where YYYY represents the
number of years, MM represents the number of months, and DD represents the
number of days.
Syntax:
_age (date_expression)
Example:
_age (1990-04-30) (if today’s date is 2003-02-05)
Result:
120906, meaning 12 years, 9 months, and 6 days.

_day_of_week
Returns the day of week (1 to 7), where 1 is the first day of the week as indicated
by the second parameter (1 to 7, 1 being Monday and 7 being Sunday). Note that
in ISO 8601 standard, a week begins with Monday being day 1.
Syntax:
_day_of_week (date_expression, integer)
Example:
_day_of_week (2003-01-01 , 1)
Result:
3

58

_day_of_year
Returns the day of year (1 to 366) in "date_ expression". Also known as Julian day.
Syntax:
_day_of_year (date_expression)
Example:
_day_of_year (2003-03-01)
Result:
61

_days_between
Returns a positive or negative number representing the number of days between
"date_expression1" and "date_expression2". If "date_expression1" <
"date_expression2", then the result will be a negative number.
Syntax:
_days_between (date_expression1 , date_expression2)
Example:
_days_between (2002-04-30 , 2002-06-21)
Result:
-52

_days_to_end_of_month
Returns a number representing the number of days remaining in the month represented by
"date_expression".
Syntax:
_days_to_end_of_month (date_expression)
Example:
_days_to_end_of_month (2002-04-20 14:30:22.123)
Result:
10

_first_of_month
Returns a date or datetime, depending on the argument, by converting
"date_expression" to a date with the same year and month but with the day set to 1.
Syntax:
_first_of_month (date_expression)
Example 1:
_first_of_month (2002-04-20)
Result:
2002-04-01
Example 2:
_first_of_month (2002-04-20 12:10:10.000)
Result:
2002-04-01 12:10:10.000

_last_of_month
Returns a date or datetime, depending on the argument, that is the last day of the
month represented by "date_expression".
Syntax:
_last_of_month (date_expression)
Example 1:
_last_of_month (2002-01-14)
Result:

59

2002-01-31
Example 2:
_last_of_month (2002-01-14 12:10:10.000)
Result:
2002-01-31 12:10:10.000

_make_timestamp
Returns a timestamp constructed from "integer_expression1" (the year), "integer_expression2" (the month),
and "integer_expression3" (the day). The time portion defaults to 00:00:00.000 .
Syntax:
_make_timestamp (integer_expression1, integer_expression2, integer_expression3)
Example:
_make_timestamp (2002 , 01 , 14)
Result:
2002-01-14 00:00:00.000

_months_between
Returns a positive or negative integer number representing the number of months between
"date_expression1" and "date_expression2". If "date_expression1" is earlier than "date_expression2", then a
negative number is returned.
Syntax:
_months_between (date_expression1, date_expression2)
Example:
_months_between (2002-04-03 , 2002-01-30)
Result:
2

_week_of_year
Returns the number of the week of the year of "date_expression" according to the
ISO 8601 standard. Week 1 of the year is the first week of the year to contain a
Thursday, which is equivalent to the first week containing January 4th. A week
starts on Monday (day 1) and ends on Sunday (day 7).
Syntax:
_week_of_year (date_expression)
Example:
_week_of_year (2003-01-01)
Result:
1

_years_between
Returns a positive or negative integer number representing the number of years
between "date_expression1" and "date_expression2". If "date_expression1" <
"date_expression2" then a negative value is returned.
Syntax:
_years_between (date_expression1, date_expression2)
Example:
_years_between (2003-01-30 , 2001-04-03)
Result:
1

_ymdint_between
Returns a number representing the difference between "date_expression1" and
"date_expression2". The returned value has the form YYYYMMDD, where YYYY

60

represents the number of years, MM represents the number of months, and DD
represents the number of days.
Syntax:
_ymdint_between (date_expression1 , date_expression2)
Example:
_ymdint_between (1990-04-30 , 2003-02-05)
Result:
120906, meaning 12 years, 9 months and 6 days.

61

Summaries

This list contains predefined functions that return either a single summary value for a group of related values

or a different summary value for each instance of a group of related values.

aggregate
Returns a calculated value using the appropriate aggregation function, based on the aggregation type of the
expression.
Syntax:
aggregate (expression [auto])
aggregate (expression for [all|any] expression { , expression })
aggregate (expression for report)

average
Returns the average value of selected data items. Distinct is an alternative expression that is compatible
with earlier versions of the product.
Syntax:
average ([distinct] expression [auto])
average ([distinct] expression for [all|any] expression { , expression })
average ([distinct] expression for report)
Example:
average (Sales)
Result:
Returns the average of all Sales values.

count
Returns the number of selected data items excluding null values. Distinct is an alternative expression that is
compatible with earlier versions of the product.
Syntax:
count ([all | distinct] expression [auto])
count ([all | distinct] expression for [all|any] expression { ,expression })
count ([all | distinct] expression for report)
Example:
count (Sales)
Result:
Returns the total number of entries under Sales.

maximum
Returns the maximum value of selected data items. Distinct is an alternative expression that is compatible
with earlier versions of the product.
Syntax:
maximum ([distinct] expression [auto])
maximum ([distinct] expression for [all|any] expression { ,expression })
maximum ([distinct] expression for report)
Example:
maximum (Sales)
Result:
Returns the maximum value out of all Sales values.

median
Returns the median value of selected data items.
Syntax:
median (expression [auto])

62

median (expression for [all|any] expression { , expression })
median (expression for report)

minimum
Returns the minimum value of selected data items. Distinct is an alternative
expression that is compatible with earlier versions of the product.
Syntax:
minimum ([distinct] expression [auto])
minimum ([distinct] expression for [all|any] expression { ,expression })
minimum ([distinct] expression for report)
Example:
minimum (Sales)
Result:
Returns the minimum value out of all Sales values.

moving-average
Returns a moving average by row for a specified set of values of over a specified number of rows. The "<for-
option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used
only in the context of relational datasources.
Syntax:
moving-average (numeric_expression , numeric_expression [at expression { , expression }] [<for-option>]
[prefilter])
moving-average (numeric_expression , numeric_expression [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto
Example:
moving-average (Qty , 3)
Result:
For each row, returns the quantity and a moving average of the current row and
the preceding two rows.

moving-total
Returns a moving total by row for a specified set of values over a specified number of rows. The "<for-
option>" defines the scope of the function. The "at" option defines the level of aggregation and can be used
only in the context of relational datasources.
Syntax:
moving-total (numeric_expression , numeric_expression [at expression { , expression }] [<for-option>] [
prefilter])
moving-total (numeric_expression , numeric_expression [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto
Example:
moving-total (Qty , 3)
Result:
For each row, returns the quantity and a moving total of the current row and the preceding two rows.

percentage
Returns the percent of the total value for selected data items. The "<for-option>" defines the scope of the
function. The "at" option defines the level of aggregation and can be used only in the context of relational
datasources. This function appears in the Percentage Calculation (by year) interactive sample report.
Syntax:
percentage (numeric_expression [at expression { , expression }]
[<for-option>] [prefilter])
percentage (numeric_expression [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto

63

Example:
percentage (Sales 98)
Result:
Returns the percentage of the total sales for 1998 that is attributed to each sales
representative.

percentile
Returns a value, on a scale of one hundred, that indicates the percent of a distribution that is equal to or
below the selected data items. The "<for-option>" defines the scope of the function. The "at" option defines
the level of aggregation and can be used only in the context of relational datasources.
Syntax:
percentile (numeric_expression [at expression { , expression }][<for-option>] [prefilter])
percentile (numeric_expression [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto
Example:
percentile (Sales 98)
Result:
For each row, returns the percentage of rows that are equal to or less than the
quantity value of that row.

quantile
Returns the rank of a value within a range that you specify. It returns integers to represent any range of
ranks, such as 1 (highest) to 100 (lowest). The "<for-option>" defines the scope of the function. The "at"
option defines the level of aggregation and can be used only in the context of relational datasources.
Syntax:
quantile (numeric_expression , numeric_expression [at expression { , expression }] [<for-option>] [
prefilter])
quantile (numeric_expression , numeric_expression [<for-option>][prefilter])
<for-option> ::= for expression { , expression }|for report|auto
Example:
quantile (Qty , 4)
Result:
Returns the quantity, the rank of the quantity value, and the quantity values
broken down into 4 quantile groups (quartiles).

rank
Returns the rank value of selected data items. The sort order is optional; descending order (DESC) is
assumed by default. If two or more rows tie, then there is a gap in the sequence of ranked values (also
known as Olympic ranking). The "<for-option>" defines the scope of the function. The "at" option defines the
level of aggregation and can be used only in the context of relational datasources. Distinct is an alternative
expression that is compatible with earlier versions of the product. Null values are ranked last.
Syntax:
rank (expression [ASC|DESC] { , expression [ASC|DESC] } [at expression { , expression }] [<for-
option>] [prefilter])
rank ([distinct] expression [ASC|DESC] { , expression[ASC|DESC] } [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto
Example:
rank (Sales 98)
Result:
For each row, returns the rank value of sales for 1998 that is attributed to each
sales representative. Some numbers are skipped when a tie between rows occurs.

running-average

64

Returns the running average by row (including the current row) for a set of values. The "<for-option>"
defines the scope of the function. The "at" option defines the level of aggregation and can be used only in
the context of relational datasources.
Syntax:
running-average (numeric_expression [at expression { ,expression }] [<for-option>] [prefilter])
running-average (numeric_expression [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto
Example:
running-average (Qty)
Result:
For each row, returns the quantity and a running average of the current and the
previous rows.

running-count
Returns the running count by row (including the current row) for a set of values. The "<for-option>" defines
the scope of the function. The "at" option defines the level of aggregation and can be used only in the
context of relational datasources.
Syntax:
running-count (numeric_expression [at expression { , expression }][<for-option>] [prefilter])
running-count (numeric_expression [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto
Example:
running-count (Qty)
Result:
For each row, returns the quantity and a running count of the position of the current row.

running-difference
Returns a running difference by row, calculated as the difference between the value for the current row and
the preceding row, (including the current row) for a set of values. The "<for-option>" defines the scope of the
function. The "at" option defines the level of aggregation and can be used only in the context of relational
datasources.
Syntax:
running-difference (numeric_expression [at expression { ,expression }] [<for-option>] [prefilter])
running-difference (numeric_expression [<for-option>][prefilter])
<for-option> ::= for expression { , expression }|for report|auto
Example:
running-difference (Qty)
Result:
For each row, returns the quantity and a running difference between the value for
the current row and the preceding row.

running-maximum
Returns the running maximum by row (including the current row) for a set of values. The "<for-option>"
defines the scope of the function. The "at" option defines the level of aggregation and can be used only in
the context of relational datasources.
Syntax:
running-maximum (numeric_expression [at expression { ,expression }] [<for-option>] [prefilter])
running-maximum (numeric_expression [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto
Example:
running-maximum (Qty)
Result:
For each row, returns the quantity and a running maximum of the current and previous rows.

65

running-minimum
Returns the running minimum by row (including the current row) for a set of values. The "<for-option>"
defines the scope of the function. The "at" option defines the level of aggregation and can be used only in
the context of relational datasources.
Syntax:
running-minimum (numeric_expression [at expression { ,expression }] [<for-option>] [prefilter])
running-minimum (numeric_expression [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto
Example:
running-minimum (Qty)
Result:
For each row, returns the quantity and a running minimum of the current and previous rows.

running-total
Returns a running total by row (including the current row) for a set of values. The "<for-option>" defines the
scope of the function. The "at" option defines the level of aggregation and can be used only in the context of
relational datasources.
Syntax:
running-total (numeric_expression [at expression { ,expression }] [<for-option>] [prefilter])
running-total (numeric_expression [<for-option>] [prefilter])
<for-option> ::= for expression { , expression }|for report|auto
Example:
running-total (Qty)
Result:
For each row, returns the quantity and a running total of the current and previous
rows.

total
Returns the total value of selected data items. Distinct is an alternative expression
that is compatible with earlier versions of the product.
Syntax:
total ([distinct] expression [auto])
total ([distinct] expression for [all|any] expression { ,expression })
total ([distinct] expression for report)
Example:
total (Sales)
Result:
Returns the total value of all Sales values.

66

Common functions

Functions are pre-written formulas that simplify the process of creating calculations. Using functions, you

can quickly create formulas that may be difficult to build yourself.

abs
Returns the absolute value of "numeric_expression". Negative values are returned as positive values.
Syntax:
abs (numeric_expression)
Example 1:
abs (15)
Result:
15
Example 2:
abs (-15)
Result:
15

cast
Converts "expression" to a specified data type. Some data types allow for a length and precision to be
specified. Make sure that the target is of the appropriate type and size. The following can be used for
"datatype_specification": character, varchar, char, numeric, decimal, integer, bigint, smallint, real, float, date,
time, timestamp, time with time zone, timestamp with time zone, and interval. When type casting to an
interval type, one of the following interval qualifiers must be specified: year, month, or year to month for the
year-to-month interval datatype; day, hour,minute, second, day to hour, day to minute, day to second, hour
to minute, hour to second, or minute to second for the day-to-second interval datatype. Notes:
When you convert a value of type timestamp to type date, the time portion of the timestamp value is ignored.
When you convert a value of type timestamp to type time, the date portion of the timestamp is ignored.
When you convert a value of type date to type timestamp, the time components of the timestamp are set to
zero.
When you convert a value of type time to type timestamp, the date component is set to the current system
date. It is invalid to convert one interval datatype to the other (for instance because the number of days in a
month is variable). Note that you can specify the number of digits for the leading qualifier only, i.e. YEAR(4)
TO MONTH, DAY(5). Errors will be reported if the target type and size are not compatible with the source
type and size.
Syntax:
cast (expression , datatype_specification)
Example 1:
cast (’123’ , integer)
Result:
123
Example 2:
cast (12345 , varchar (10))
Result:
a string containing 12345

ceil
Returns the smallest integer that is greater than or equal to "numeric_expression".
Syntax:
ceil (numeric_expression)

ceiling
Returns the smallest integer that is greater than or equal to "numeric_expression".

67

Syntax:
ceiling (numeric_expression)
Example 1:
ceiling (4.22)
Result:
5
Example 2:
ceiling (-1.23)
Result:
-1

char_length
Returns the number of logical characters in "string_expression”.
Syntax:
char_length (string_expression)
Example:
char_length (’Canada’)
Result:
6

character_length
Returns the number of characters in "string_expression".
Syntax:
character_length (string_expression)
Example:
character_length (’Canada’)
Result:
6

coalesce
Returns the first non-null argument (or null if all arguments are null). Requires
two or more arguments in "expression_list".
Syntax:
coalesce (expression_list)
Example:
coalesce ([Unit price], [Unit sale price])
Result:
Returns the unit price, or the unit sale price if the unit price is null.

current_date
Returns a date value representing the current date of the computer that the database software runs on.
Syntax:
current_date
Example:
current_date
Result:
2003-03-04

current_time
Returns a time with time zone value, representing the current time of the computer that runs the database
software if the database supports this function. Otherwise, it represents the current time of the computer that
runs IBM® Cognos® BI software.
Syntax:

68

current_time
Example:
current_time
Result:
16:33:11.354+05:00

current_timestamp
Returns a datetime with time zone value, representing the current time of the computer that runs the
database software if the database supports this function. Otherwise, it represents the current time of the
computer that runs IBM® Cognos® BI software.
Syntax:
current_timestamp
Example:
current_timestamp
Result:
2003-03-03 16:40:15.535+05:00

exp
Returns 'e' raised to the power of "numeric_expression". The constant 'e' is the base of the natural logarithm.
Syntax:
exp (numeric_expression)
Example:
exp (2)
Result
7.389056

extract
Returns an integer representing the value of datepart (year, month, day, hour,minute, second) in
"datetime_expression".
Syntax:
extract (datepart , datetime_expression)
Example 1:
extract (year , 2003-03-03 16:40:15.535)
Result:
2003
Example 2:
extract (hour , 2003-03-03 16:40:15.535)
Result:
16

floor
Returns the largest integer that is less than or equal to "numeric_expression".
Syntax:
floor (numeric_expression)
Example 1:
floor (3.22)
Result:
3
Example 2:
floor (-1.23)
Result:
-2

69

ln
Returns the natural logarithm of "numeric_expression".
Syntax:
ln (numeric_expression)
Example:
ln (4)
Result:
1.38629

localtime
Returns a time value, representing the current time of the computer that runs the database software.
Syntax:
localtime
Example:
localtime
Result:
16:33:11

localtimestamp
Returns a datetime value, representing the current timestamp of the computer that runs the database
software.
Syntax:
localtimestamp
Example:
localtimestamp
Result:
2003-03-03 16:40:15

lower
Returns "string_expression" with all uppercase characters shifted to lowercase.
Syntax:
lower (string_expression)
Example:
lower (’ABCDEF’)
Result:
abcdef

mod
Returns the remainder (modulus) of "integer_expression1" divided by
"integer_expression2". "Integer_expression2" must not be zero or an exception condition is raised.
Syntax:
mod (integer_expression1, integer_expression2)
Example:
mod (20 , 3)
Result:
2

nullif
Returns null if "expression1" equals "expression2", otherwise returns "expression1".
Syntax:
nullif (expression1, expression2)

octet_length

70

Returns the number of bytes in "string_expression".
Syntax:
octet_length (string_expression)
Example 1:
octet_length (’ABCDEF’)
Result:
6
Example 2:
octet_length (’’)
Result:
0

position
Returns the integer value representing the starting position of "string_expression1" in "string_expression2"
or 0 when the "string_expression1" is not found.
Syntax:
position (string_expression1 , string_expression2)
Example 1:
position (’C’ , ’ABCDEF’)
Result:
3
Example 2:
position (’H’ , ’ABCDEF’)
Result:
0

power
Returns "numeric_expression1" raised to the power "numeric_expression2". If "numeric_expression1" is
negative, then "numeric_expression2" must result in an integer value.
Syntax:
power (numeric_expression1 , numeric_expression2)
Example:
power (3 , 2)
Result:
9

_round
Returns "numeric_expression" rounded to "integer_expression" places to the rightof the decimal point.
Notes: "integer_expression" must be a non-negative integer. Rounding takes place before data formatting is
applied.
Syntax:
_round (numeric_expression , integer_expression)
Example:
_round (1220.42369, 2)
Result:
1220.42

sqrt
Returns the square root of "numeric_expression". "Numeric_expression" must be non-negative.
Syntax:
sqrt (numeric_expression)
Example:
sqrt (9)

71

Result:
3

substring
Returns the substring of "string_expression" that starts at position
"integer_expression1" for "integer_expression2" characters or to the end of "string_expression" if
"integer_expression2" is omitted. The first character in "string_expression" is at position 1.
Syntax:
substring (string_expression , integer_expression1 [,integer_expression2])
Example:
substring (’abcdefg’ , 3 , 2)
Result:
Cd

trim
Returns "string_expression" trimmed of leading and trailing blanks or trimmed of a certain character
specified in "match_character_expression". "Both" is implicit when the first argument is not stated and blank
is implicit when the second argument is not stated.
Syntax:
trim ([[trailing|leading|both] [match_character_expression] ,] string_expression)
Example 1:
trim (trailing ’A’ , ’ABCDEFA’)
Result:
ABCDEF
Example 2:
trim (both , ’ ABCDEF ’)
Result:
ABCDEF

upper
Returns "string_expression" with all lowercase characters converted to uppercase.
Syntax:
upper (string_expression)
Example:
upper (’abcdef’)
Result:
ABCDEF

72

Report functions

Today
Returns the current system date.
Syntax:
Today ()

Now
Returns the current system time.
Syntax:
Now ()

AsOfDate
Returns the date value of the AsOfDate expression, if it is defined. Otherwise, AsOfDate returns the report
execution date.
Syntax:
AsOfDate ()

AsOfTime
Returns the time value of the AsOfTime expression, if it is defined. Otherwise, AsOfTime returns the report
execution time.
Syntax:
AsOfTime ()

ReportDate
Returns the report execution date and time.
Syntax:
ReportDate ()

ReportName
Returns the report name. If a saved report view is run, returns the report view name.
Syntax:
ReportName ()

ReportPath
Returns the report path.
Syntax:
ReportPath ()

ReportDescription
Returns the report description.
Syntax:
ReportDescription ()

ReportLocale
Returns the run locale.
Syntax:
ReportLocale ()

GetLocale
Returns the run locale (deprecated).
Syntax:
GetLocale ()

73

Locale
Returns the run locale.
Syntax:
Locale ()

ReportProductLocale
Returns the product locale.
Syntax:
ReportProductLocale ()

ReportAuthorLocale
Returns the author locale.
Syntax:
ReportAuthorLocale ()

ReportSaveDate
Returns the date when the report was last saved.
Syntax:
ReportSaveDate ()

ReportCreateDate
Returns the date when the report was created.
Syntax:
ReportCreateDate ()

ReportID
Returns the report ID.
Syntax:
ReportID ()

ReportOutput
Returns the name of the output format, such as CSV, HTML, HTMLFragment,layoutDataXML, MHT, PDF,
rawXML, spreadsheetML (Excel 2007 format),XHTML, xlsxData (Excel 2007 Data format), XLWA (Excel
2002 format), XML,singleXLS (deprecated), XLS (deprecated).
Syntax:
ReportOutput ()

ReportOption
Returns the value of the run option variable identified by "optionName", such as attachmentEncoding, burst,
cssURL, email, emailAsAttachment, emailAsURL,
emailBody, emailSubject, emailTo, emailToAddress, metadataModel, outputEncapsulation, outputFormat,
outputLocale, outputPageDefinition,
outputPageOrientation, primaryWaitThreshold, print, printer, printerAddress, prompt, promptFormat, saveAs,
saveOutput, secondaryWaitThreshold,
verticalElements, or xslURL.
Syntax:
ReportOption (’optionName’)

ServerName
Returns the name of the web server where the run request originated from. The value may be empty if the
request is executed from the scheduler.
Syntax:

74

ServerName ()

ServerLocale
Returns the locale of the server that runs the report.
Syntax:
ServerLocale ()

ModelPath
Returns the model path.
Syntax:
ModelPath ()

ParamNames
Returns all parameter names.
Syntax:
ParamNames ()

ParamName
Returns the parameter name of "parameterName".
Syntax:
ParamName (’parameterName’)

ParamDisplayValue
Returns a string that is the parameter display value of "parameterName".
Syntax:
ParamDisplayValue (’parameterName’)

ParamValue
Returns the parameter value of "parameterName".
Syntax:
ParamValue (’parameterName’)

ParamCount
Returns the parameter count of "parameterName".
Syntax:
ParamCount (’parameterName’)

RowNumber
Returns the current row.
Syntax:
RowNumber ()

PageNumber
Returns the current page number.
Syntax:
PageNumber ()

PageCount
Returns the current page count. This function works only when the report output is Adobe® PDF or
Microsoft® Excel. If you save the report output, this function works for all formats.
Syntax:
PageCount ()

75

IsPageCountAvailable
Returns Boolean 1 (true) if the page count is available for the current execution of
the report; otherwise, returns Boolean 0 (false).
Syntax:
IsPageCountAvailable ()

HorizontalPageNumber
Returns the current horizontal page number.
Syntax:
HorizontalPageNumber ()

HorizontalPageCount
Returns the current horizontal page count.
Syntax:
HorizontalPageCount ()

PageName
Returns the current page name.
Syntax:
PageName ()

URLEncode
Returns the URL encoded value of the input text.
Syntax:
URLEncode (’text’)

TOCHeadingCount
Returns the table of contents heading count for a specified heading level.
Syntax:
TOCHeadingCount (headingLevel)

IsAccessible
Returns Boolean 1 (true) if the report is run with the accessibility features enabled.Use this function as a
variable expression with a conditional block to make yourreports accessible. For example, you can add a list
or crosstab equivalent to a chartin reports that are run with accessibility features enabled.
Syntax:
IsAccessible()

IsBooklet
Returns Boolean 1 (true) if the report is a child report of a booklet; otherwise,returns Boolean 0 (false).
Syntax:
IsBooklet()

ColumnNumber
Returns the current column number.
Syntax:
ColumnNumber ()

IsCrosstabRowNodeMember
Returns Boolean 1 (true) if the current node is a crosstab row node member.
Syntax:
IsCrosstabRowNodeMember ()

76

IsCrosstabColumnNodeMember
Returns Boolean 1 (true) if the current node is a crosstab column node member.
Syntax:
IsCrosstabColumnNodeMember ()

IsInnerMostCrosstabRowNodeMember
Returns Boolean 1 (true) if the current node is an innermost crosstab row node member.
Syntax:
IsInnerMostCrosstabRowNodeMember ()

IsInnerMostCrosstabColumnNodeMember
Returns Boolean 1 (true) if the current node is an innermost crosstab column node member.
Syntax:
IsInnerMostCrosstabColumnNodeMember ()

IsOuterMostCrosstabRowNodeMember
Returns Boolean 1 (true) if the current node is an outermost crosstab row node member.
Syntax:
IsOuterMostCrosstabRowNodeMember ()

IsOuterMostCrosstabColumnNodeMember
Returns Boolean 1 (true) if the current node is an outermost crosstab column node
member.
Syntax:
IsOuterMostCrosstabColumnNodeMember ()

IsFirstColumn
Returns Boolean 1 (true) if the current column is the first column.
Syntax:
IsFirstColumn ()

IsLastColumn
Returns Boolean 1 (true) if the current column is the last column.
Syntax:
IsLastColumn ()

77

Data type casting functions

_add_days
Returns the datetime resulting from adding "integer_expression" days to "timestamp_expression".
Syntax:
_add_days (timestamp_expression , integer_expression)
Example:
_add_days (2007-01-14 00:00:00.000 , 3)
Result:
2007-01-17 00:00:00.000

_add_months
Returns the datetime resulting from adding "integer_expression" months to "timestamp_expression".
Syntax:
_add_months (timestamp_expression , integer_expression)

_add_years
Returns the datetime resulting from adding "integer_expression" years to "timestamp_expression".
Syntax:
_add_years (timestamp_expression , integer_expression)

_age
Returns a number by subtracting "timestamp_expression" from today's date.
Syntax:
_age (timestamp_expression)
Example:
_age ([Query1].[Date]), where [Query1].[Date] is March 2, 2004, and today is July 8, 2009
Result:
50,406, where 5 is the number of years, 04 is the number of months, and 06 is the number of days.

_day_of_week
Returns the day of the week (between 1 and 7) for "timestamp_expression" where "integer_expression"
indicates which day of that week is day 1. To determine "integer_expression", choose the day of the week
and count from Monday; for example, if you choose Wednesday, "integer_expression" would be 3 because
Wednesday is the third day from Monday.
Syntax:
_day_of_week (timestamp_expression , integer_expression)
Example:
_day_of_week (2009-01-01 , 7), where 7 means that Sunday is the first day of the week.
Result:
5

_day_of_year
Returns the ordinal for the day of the year in "timestamp_ expression" (1 to 366). Also known as Julian day.
Syntax:
_day_of_year (timestamp_expression)

_days_between
Returns a positive or negative number representing the number of days between "timestamp_expression1"
and "timestamp_expression2". If "timestamp_expression1"< "timestamp_expression2", the result will be a
negative number.
Syntax:

78

_days_between (timestamp_expression1 , timestamp_expression2)

_days_to_end_of_month
Returns a number representing the number of days remaining in the month represented by
"timestamp_expression".
Syntax:
_days_to_end_of_month (timestamp_expression)

_first_of_month
Returns a datetime that is the first day of the month represented by "timestamp_expression".
Syntax:
_first_of_month (timestamp_expression)
Example 1:
_first_of_month (2009-05-04 00:00:00.000)
Result:
Returns 2009-05-01 00:00:00.000
Example 2:
_first_of_month (current_date)
Result:
Returns Jul 1, 2009 if the current date is July 30, 2009.

_last_of_month
Returns a datetime that is the last day of the month represented by "timestamp_expression".
Syntax:
_last_of_month (timestamp_expression)

_make_timestamp
Returns a timestamp constructed from "integer_expression1" (the year), "integer_expression2" (the month),
and "integer_expression3" (the day). The time portion defaults to 00:00:00.000 .
Syntax:
_make_timestamp (integer_expression1 , integer_expression2 , integer_expression3)

_months_between
Returns a positive or negative number representing the number of months between
"timestamp_expression1" and "timestamp_expression2". If "timestamp_expression1"
< "timestamp_expression2", the result will be a negative number.
Syntax:
_months_between (timestamp_expression1 , timestamp_expression2)

_week_of_year
Returns the week number (1-53) of the year for "timestamp_expression". According to the ISO 8601, week 1
of the year is the first week to contain a Thursday, which is equivalent to the first week containing January
4th. A week starts on a Monday (day 1) and ends on a Sunday (day 7).
Syntax:
_week_of_year (timestamp_expression)

_years_between
Returns a positive or negative integer representing the number of years between"timestamp_expression1"
and "timestamp_expression2". If "timestamp_expression1"
< "timestamp_expression2", a negative value is returned.
Syntax:
_years_between (timestamp_expression1 , timestamp_expression2)

79

_ymdint_between
Returns a number representing the difference between "timestamp_expression1" and
"timestamp_expression2". This value has the form YYMMDD, where YY represents the number of years,
MM represents the number of months, and DD represents the number of days.
Syntax:
_ymdint_between (timestamp_expression1 , timestamp_expression2)
Example:
_ymdint_between ([Query1].[Date (close date)] , [Query1].[Date (ship
date)]), where [Query1].[Date (close date)] is February 20, 2004, and [Query1].[Date (ship date)] is January
19, 2004.
Result:
101, where 1 is the number of months and 01 is the number of days.

abs
Returns the absolute value of "numeric_expression". If "numeric_expression" is negative, a positive value is
returned.
Syntax:
abs (numeric_expression)

ceiling
Returns the smallest integer that is greater than or equal to "numeric_expression".
Syntax:
ceiling (numeric_expression)

character_length
Returns the number of characters in "string_expression".
Syntax:
character_length (string_expression)

date2string
Returns a date as a string in YYYY-MM-DD format.
Syntax:
date2string (date_expression)

date2timestamp
Converts "date_expression" to a timestamp. The time part of the timestamp will equal zero.
Syntax:
date2timestamp (date_expression)

date2timestampTZ
Converts "date_expression" to a timestamp with a time zone. The time and time zone parts of the timestamp
will equal zero.
Syntax:
date2timestampTZ (date_expression)

DTinterval2string
Returns a date time interval as a string in DDDD HH:MM:SS.FFFFFFF or -DDDD
HH:MM:SS.FFF format.
Syntax:
DTinterval2string (date_time_interval_expression)

DTinterval2stringAsTime
Returns a date time interval as a string in HHHH:MM:SS.FFFFFFF or

80

HH:MM:SS.FFF format. Days are converted to hours.
Syntax:
DTinterval2stringAsTime (date_time_interval_expression)

exp
Returns the constant 'e' raised to the power of "numeric_expression". The constant 'e' is the base of the
natural logarithm.
Syntax:
exp (numeric_expression)
Example:
exp (2)
Result:
7.389056

extract
Returns an integer representing the value of "date_part_expression" in "datetime_expression".
"Date_part_expression" could be the year, month, day, hour, minute, or second.
Syntax:
extract (date_part_expression , datetime_expression)
Example 1:
extract (year , 2003-03-03 16:40:15.535)
Result:
2003
Example 2:
extract (hour , 2003-03-03 16:40:15.535)
Result:
16

floor
Returns the largest integer that is less than or equal to "numeric_expression".
Syntax:
floor (numeric_expression)

int2DTinterval
Converts an integer to a date time interval. "String_expression" specifies what "integer_expression"
represents: "ns" = nanoseconds, "s" = seconds (default), "m" =
minutes, "h" = hours, "d" = days.
Syntax:
int2DTinterval (integer_expression , string_expression)
Example 1:
int2DTinterval (1020,"h")
Result:
42 days 12 hours
Example 2:
int2DTinterval (1020,"s")
Result:
17 minutes

int2YMinterval
Converts "integer_expression" to a year month interval. "String_expression" specifies what
"integer_expression" represents: "y" = years, "m" = months (default).
Syntax:
int2YMinterval (integer_expression , string_expression)

81

ln
Returns the natural logarithm of "numeric_expression".
Syntax:
ln (numeric_expression)

lower
Returns "string_expression" with all uppercase characters converted to lowercase.
Syntax:
lower (string_expression)

mapNumberToLetter
Adds "integer_expression" to "string_expression".
Syntax:
mapNumberToLetter (string_expression , integer_expression)
Example:
mapNumberToLetter (’a’ , 1)
Result:
B

mod
Returns an integer value representing the remainder (modulo) of
"integer_expression1" / "integer_expression2".
Syntax:
mod (integer_expression1 , integer_expression2)

nullif
Returns null if "string_expression1" equals "string_expression2" (case-insensitive), otherwise returns
"string_expression1".
Syntax:
nullif (string_expression1 , string_expression2)

number2string
Converts "numeric_expression" to a string, using the %g format specifier (C/C++ syntax).
Syntax:
number2string (numeric_expression)

octet_length
Returns the number of bytes in "string_expression".
Syntax:
octet_length (string_expression)

position
Returns the integer value representing the starting position of "string_expression1" in "string_expression2".
Returns 0 if "string_expression1" is not found.
Syntax:
position (string_expression1 , string_expression2)

power
Returns "numeric_expression1" raised to the power of "numeric_expression2".
Syntax:
power (numeric_expression1 , numeric_expression2)
Example:

82

power (3 , 2)
Result:
9

round
Returns "numeric_expression" rounded to the nearest value with "integer_expression" significant digits to
the right of the decimal point. If "integer_expression" is negative, "numeric_expression" is rounded to the
nearest absolute value with "integer_expression" significant digits to the left of the decimal point. Rounding
takes place before data formatting is applied.
Syntax:
round (numeric_expression , integer_expression)
Example:
round (125, -1)
Result:
130

sqrt
Returns the square root of "numeric_expression". "Numeric_expression" must not be a negative value.
Syntax:
sqrt (numeric_expression)

status
Returns the status of "expression". Possible values are: 0 - OK, 1 - null, 2 – not available, 4 - divide by zero,
8 - overflow, 16 - security, 32 - error, 64 - new, 128 - sample, 256 - pending.
Syntax:
status (expression)

string2date
Returns "string_expression" as a date in YYYY-MM-DD format.
Syntax:
string2date (string_expression)

string2double
Returns a floating point number. "String_expression" has the following form:
"[whitespace] [sign] [digits] [digits] [{d|D|e|E }[sign]digits]"
Syntax:
string2double (string_expression)

string2DTinterval
Returns "string_expression" as a date time interval in [-]DD HH:MM[:SS[.FFF]] format.
Syntax:
string2DTinterval (string_expression)

string2int32
Returns an integer. "String_expression" has the following form: "[whitespace]
[{+|-}] [digits]"
Syntax:
string2int32 (string_expression)

string2int64
Returns a long integer. "String_expression" has the following form: "[whitespace] [{+|-}] [digits]"
Syntax:
string2int64 (string_expression)

83

string2time
Returns "string_expression" as a time in HH:MM:SS.FFFFFFF format.
Syntax:
string2time (string_expression)

string2timestamp
Returns "string_expression" as a timestamp in YYYY-MM-DD [T|t|[white space]+]
HH:MM:SS.FFFFFFF format.
Syntax:
string2timestamp (string_expression)

string2timestampTZ
Returns "string_expression" in YYYY-MM-DD HH:MM:SS.FFFFFFF +HHMM or YYYY-MM-DD [T|t]
HH:MM:SS.FFF -HHMM format.
Syntax:
string2timestampTZ (string_expression)

string2YMinterval
Returns "string_expression" as a Year Month Interval in [-]YY MM format.
Syntax:
string2YMinterval (string_expression)

substring
Returns the substring of "string_expression" that starts at position "integer_expression1" for
"integer_expression2" characters or to the end of "string_expression" if "integer_expression2" is -1. The first
character in "string_expression" is at position 1.
Syntax:
substring (string_expression , integer_expression1 , integer_expression2)
Example:
substring ([Sales (analysis)].[Sales staff].[Sales staff].[Sales staff].[Position code], 3 , 5)
Result:
Returns characters 3 to 7 of the position codes.

time2string
Returns a time as a string in HH:MM:SS.FFF format.
Syntax:
time2string (time_expression)

timestamp2date
Converts "timestamp_expression" to a date. The time part of the timestamp will be ignored.
Syntax:
timestamp2date (timestamp_expression)

timestamp2string
Returns a timestamp as a string in YYYY-MM-DD HH:MM:SS.FFFFFFF format.
Syntax:
timestamp2string (timestamp_expression)

timestamp2timestampTZ
Converts "timestamp_expression" to a timestamp with a time zone. The displacement part of the timestamp
with the time zone will be zero.
Syntax:

84

timestamp2timestampTZ (timestamp_expression)

timestampTZ2date
Converts "timestamp_time_zone_expression" to a date. The time and time zone parts of the timestamp will
be ignored.
Syntax:
timestampTZ2date (timestamp_time_zone_expression)

timestampTZ2string
Returns a timestamp with the time zone as a string in YYYY-MM-DD
HH:MM:SS.FFFFFFF +HHMM or YYYY-MM-DD HH:MM:SS.FFF -HHMM format.
Syntax:
timestampTZ2string (timestamp_time_zone_expression)

timestampTZ2timestamp
Converts "timestamp_time_zone_expression" to a timestamp. The displacement part of the timestamp with
the time zone will be ignored.
Syntax:
timestampTZ2timestamp (timestamp_time_zone_expression)

timeTZ2string
Returns a time with the time zone as a string in HH:MM:SS.FFF +HHMM or HH:MM:SS.FFFFFFF -HHMM
format. For example, -05:30 means a timezone of GMT minus 5 hours and 30 minutes
Syntax:
timeTZ2string (timeTZ_expression)

trim
Returns "string_expression" trimmed of any leading and trailing blanks or trimmed of the character specified
by "match_character_expression". "Trim_what_expression" may be "leading", "trailing", or "both" (default).
"Match_character_expression" can be an empty string to trim blanks or can specify a character to be
trimmed.
Syntax:
trim (trim_what_expression , match_character_expression , string_expression)

upper
Returns "string_expression" with all lowercase characters converted to uppercase.
Syntax:
upper (string_expression)

YMinterval2string
Returns "year_month_interval_expression" as a string in (YY MM) or -(YY MM) format.
Syntax:
YMinterval2string (year_month_interval_expression)

85

Appendix B – Common errors

If an error is displayed, more information may be available by clicking the “Details” link on the error page.

Expression is not Accessible for the Current User

Indications:
Error message will include the statements like: [AdHoc].{QuerySubject_Name}.{field_name} used in the
expression is not accessible for the current user.

Causes:
This is expected behavior if the user does not have permission to view the type of data included in the
report. The user is trying to run a report which includes data from a function they do not have at least view
permission to in Manager Services. A user cannot run a report with data they do not have permission to see
in Manager Services.

Fixes:
The user must be granted at least view access to the function in Manager Services that corresponds to the
data in the error. After function security is changed, the user must re-login to Manager Services to see the
change take effect in HCA Reporting.
To see which query subjects are secured to which functions in Manager Services, you can run a report on
Ad Hoc > Application > Ad Hoc Function Security List in HCA Ad Hoc.
If the user already has permission to the function, try removing function security for that user, saving, then
re-granting permission to reset the security.

Example Screenshot:
In the sample screen shot below the user needs permission to the Job Titles function before the report will
run.

Firewall Security Rejection

Indications:
Error message stating Firewall Security Rejection will appear when trying open HCA Reporting or trying to
save or edit a report.

Causes:
This is an error from the Cognos application. If Cognos does not receive a request from a valid, known
Cognos session, it will block it. This error means a Cognos session does not exist, has been lost, timed out
or replaced. Cognos does not want an unknown session accessing it.
This can happen for a few reasons:
-If HCA Reporting is open in a browser window and in another window Manager Services has timed out or
has been logged into again, the old Cognos session will be invalidated.
-A browser window with HCA Reporting has been left open for an extended period of time and the Cognos
session has been timed out.
-This can also occur when trying to launch HCA Reporting in Manager Services. In that scenario, it means
the seamless login to Cognos that happens at Manager Services login has failed. HCA items will also be

86

missing from the Manager Services Tools menu in this situation. The most likely reason this is because the
user’s Active Directory account is locked out or the password needs to be reset.

Fixes:
Close all browser windows and login to Manager Services again.

If this happens and the user needs to save the current report, one only option is to do this:
In HCA Reporting go to the “More” menu and select “Copy report to clipboard”.

Close that browser and log in to Manager Services again and create a blank report. Then got to the “More”
and select “Open report from clipboard” and you should now have the same report back open and then it
can be saved or saved as.

If the message appears when trying to launch HCA Reporting, it is possible the user’s account is locked out

or passwords are out of sync. The user can try resetting their password in Manager Services. The password

should not contain parts of their username or an ampersand, and they should not re-use a password they

used previously in the system. The user should login to Manager Servies again after the password change.

If launching HCA Reporting still fails to launch, contact iCON Support.

Example Screenshot:

Model or Package does not exist or you are not allowed to use it because of security settings
or
No access to property “metadataModelPackage”

Indications:
Error message stating:
“Model or Package /content/folder[@name=’iCON
Content’]/folder[@name=’Packages’]/package[@name={customer number}] does not exist or you are not
allowed to use it because of security settings.”
Or
“You do not have access to the property “metadataModelPackage” when opening a report.

Causes:
This is expected behavior if the user tries to open a report designed from the package of a customer number
different than the one currently logged into in Manager Services. This also applies to Live versus Test as
these are each different customer numbers. You can only run reports designed for the customer you are
logged into.

Fixes:
To run a report designed under a different customer number, the package of the report must be changed to
the customer number you are currently logged into. See Setting the package for a report.

87

Example Screenshot:

Value Exceeding its Max Length or Precision

Indications:
Error message will include the statement: [DataDirect][ODBC Progress Driver][Progress]Column {column-
name} in table {table-name} has a value exceeding its max length or precision.

Causes:
This is a database issue that must be addressed by UHRO.

Fixes:
Contact iCON Support.

Example Screenshot:

Cursor Not Opened

Indications:
Error message will include the statement: “[DataDirect][ODBC Progress OpenEdge Wire Protocol
driver][OPENEDGE]Cursor not opened”.

Causes:
The user attempted to run or edit a report and the error appeared. This is an error from the Progress
database and not directly related to Cognos or the report. The Progress database is busy or short on
resources so the request to run a query from Cognos was not completed. This typically happens with more
complex or data intensive reports. Progress has refused this attempt at retrieving the data.

Fixes:
Click the Refresh link on the error page to resubmit the query or switch to design view and try running the
report again. It should work on future attempts. If not, try simplifying the report or remove fields until you
identify the field causing the error to appear.

Example Screen Shot:

88

Cross Join Error

Indications:
Error message will include the statement: “Cross joins between query subjects are not permitted”.

Causes:
The user attempted to use data from query subjects that are not related. There is no join between the data in
the report model. This may lead to a massive, non-sensible report, so it is not allowed by Cognos.

Fixes:
Select data from different query subjects which do have a join or if it is believed a join is missing and should
exist, contact iCON Support. Alternatively, users proficient in Cognos could create multiple queries in the
report and the report author could define their own join logic for these queries.

Example Screenshot:

